

THURSDAY, SEPT. 15, 2016

BEST BEST & KRIEGER LLP

Divining LA: New Decision Support Tools for Climate Adaptation in Drylands

Hadley Arnold, Arid Lands Institute

aridlands.org

THE CHALLENGE

NEW TOOLS

PROJECTED APPLICATIONS + OBSTACLES) TO IMPLEMENTATION

3

4

THE CHALLENGE: TO MAXIMIZE LOCALIZATION POTENTIALS

RECOGNIZED OPPORTUNITY: STORMWATER TO INCREASE LOCAL SUPPLY; REDUCE CARBON EMISSIONS.

Relevant water data is insufficiently rich, integrated, and analyzable to inform effective site-specific decision making.

HAZEL: NEW DECISION-SUPPORT TOOL FOR WATER-SMART DESIGN

LOOSE ESTIMATIONS AND APPROXIMATIONS

Hazel 1.0

Phase I: Probabilistic Overlay Approach

Geospatial Mode

This model is both a computation device and visualization tool. We designed it to aid in the identification of the most opportunistic areas for capturing stormwater and safely infiltrating it to replenish groundwater supplies, a recognized priority for offsetting dependence on water imports. The model uses a multi-criteria decision-making approach to identify the most suitable areas for stormwater capture, detention, conveyance, and safe infiltration. Functionally, the model is composed of multiple components: a stormwater runoff model, an infiltration model, and a constraint model. Outputs from these components are combined to form a resultant infiltration suitability analysis and a subwatershed prioritization analysis.

Run Off Model

30-year Precipitation Normals

15m Remotely Sensed Impermeability Assessment

Infiltration Model

1915 + 1919 USDA Soil Survey for San Fernando Valley, LA Basin

2008 NRCS SSURGO Soil Survey [incomplete]

2012 CA Quaternary Surficial Geology

2003 CA Geologic Survey Soil Liquefaction

Constraint Fuzzy Logic Model

2007 EPA Superfund Plume Dataset

2012 EPA Toxic Release Database

2013 CA Water Resources Control Board Geotracker Sites

Resultant Model

Surface Run-Off

Infiltration Model

Prioritization

HAZEL Zone 2: HYBRID STRATEGIES: CAPTURE and/or CONVEY

1. Suitability Analysis

Infiltration Opportunity of Hazel Zones

2. Performance Metrics

Ecosystem Services Cost/Benefit

3. Right Sizing

System design and optioneering Climate scenarios

4. Synthesis

Prioritization & Planning

Performance Metrics

Water generated (infiltrate or harvest)

gallons (or acre/feet)

Energy Saved

kWh

GHG Reduced

Tons of CO2e

Habitat created

Acres

Economic Cost/Benefit

Dollars expended/saved

Pollutants Removed

Lbs sediment, nutrients, metals etc.../year

Heat Reduction

Area affected and degree temp reduction by location

PROJECTED APPLICATIONS + OUTCOMES: CASE STUDY by PERKINS + WILL

CASE STUDY SITE

CASE STUDY SITE

HZ1: Infiltrate (Option A – Bioretention Basin)

11.8 Acre-ft/year 33 homes

54 MWh/year

Tonnes CO2e/year 11 cars

0.5 Acres habitat

0.8 Acres affected for urban heat reduction

Value of Resources ~ \$15,789/year

Regional Implication: 5,000 Networked BMPs 167,249 homes 59,010 Acre-ft/year 276,960 MWh/year 229,200 Tonnes CO2e/year 2,510 Acres habitat Acres affected for urban heat reduction

PATHS (and OBSTACLES) TO IMPLEMENTATION

vater-smart CREDITS + INCENTIVES

water-smart BUILDING SYSTEMS

Doug Bergert, Anne Smith, Alec Sands. Perkins + Will Water Tower

and a water-smart CITIZENRY.

aridlands.org

